
Journal of Scientific and Practical Computing
Vol. 1, No. 2 (2007) 41–50

AUTOMATIC CODE GENERATION: MODEL–CODE SEMANTIC
CONSISTENCY

ANDREW J. KORNECKI1 and SONA JOHRI2

1Computer & Software Engineering Department, Embry Riddle Aeronautical University, Daytona
Beach, FL 32114, USA, kornecka@erau.edu

2BSC – Guidant Corporation, Saint Paul, MN 55112, USA, sona.johri@guidant.com

Abstract:

Automatic translation or code generation of software models to code may help alleviate problems
associated with manual coding effort. This paper emphasizes the importance of attaining a high
level of assurance that the process of automatically translating model to code is correct. It illustrates
modeling experiments performed using Statemate (iLogix) to establish a correspondence between
model elements and code constructs. The research is a step towards achieving assurance of
semantic consistency between model and generated code.

Keywords: Software Tools, Automatic Code Generation, Validation & Verification, COTS,
Testing.

1. Introduction

Automatic code generation (ACG) helps to increase effectiveness of complex software
production by reducing the cost and time associated with the coding effort. However, it is
extremely important that the generated code faithfully reflects the model from which it is
produced. The presented paper is an attempt to examine means to assess the semantic
consistency between model and code so that sufficient reliance can be placed on ACG.

As syntax defines the structure of legal constructs of a modeling or programming
language, semantics gives the meaning of these constructs. Both model and the resulting
program can be represented as functions mapping inputs satisfying some properties into
results satisfying other properties. The denotational semantics is based on constructing
formal mathematical object expressing the meaning of the system. The operational
semantics describe how a valid model (or a program) is interpreted as sequences of
computational steps. These sequences then represent the meaning of the model (or
program) [1].

In the case of automatic code generation, semantics refer to the meaning of modeling
elements (symbols) and how they are interpreted. Dion in his paper [2] writes: “The
semantics of textual or graphical formalism define the meaning of program written in it.”

Chen
Journal of Scientific and Practical Computing Vol. 1, No. 2 (2007) 41–50

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 42

Software development tools represent the specification/design of a system in form of
models using variety of graphical notations (statecharts, class diagrams, sequence
diagrams, flowcharts, etc.). These models use specific symbols to define programming
and run-time constructs. However, the interpretation of their behavior depends on the
particular tool implementation. The same model implemented in three different tools may
exhibit slightly varying behavior as shown in [3]. To make an argument that the model
and code are semantically consistent, all the constructs of the model must be shown to
have a corresponding construct in code (and vice versa). Also, the behavior of the model
is the same as the behavior of the code when executed. This can be shown by either
manual or automatic analysis of both: the model and the code from perspective of
fulfilling all pre- and post conditions, invariants and assertions.

On the University of York exchange forum [4] Crocker writes: “if the model from
which code is generated completely describes the required behaviors and is written in a
notation with well-defined semantics, then there is no fundamental difference between
this form of code generation and a compiler. Therefore, immature automatic code
generators should not be trusted, just as in case of immature compilers”. The semantic
consistency is an important aspect in demonstrating that the code generated faithfully
reproduces the intent of the model representing system design.

Several commercial tools are available to provide support for translation of formal or
semi formal specification to executable code. Typical examples are: Statemate and
Rhapsody from iLogix, Tau from Telelogics, Matlab/Simulink/Stateflow/RTW from
Mathworks, RoseRT from Rational/IBM, SCADE from Esterel Technologies and many
others. However, there is reason to distrust an automatically generated code: (a) the
specification language and/or target language may lack formal specification, (b) the
translation may not be formally defined, and (c) the translation tool may be incorrectly
implemented. Therefore, the generated code cannot be blindly trusted unless there is an
appropriate argument to the contrary. The paper outlines the methodology used to
evaluate correctness of the translation from model to code. This research is another step
in making code generation more acceptable for safety critical systems in regulated
industry.

2. Background

It is acknowledged that the traditional approach of hand coding is not ideal and as
software increases in complexity, this method and testing may be inadequate for
embedded systems. Model-Based Development (MBD) methodologies and automatic
code generation have emerged, shifting the focus of the software development process.
MBD allows verification of the software specification at the model level and reduces
manual coding. ACG also gives an engineer the opportunity to focus on the high-level
design issues and on better understanding of the problem.

According to O’Halloran [5], “automatic code generation is viewed with suspicion, to
some extent unfairly, partly because the ‘development process’ can be easily changed
with little or no visibility to an auditor. Another reason is that if the automatic code

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 43

generator is a black box commercial tool then there is no human understanding of what is
being generated. If the commercial tool changes every six months then generated code
could be subtly different for the same input to the code generator.” For ACG tool used for
safety critical software, the modeling and target language must be simple and suitable for
safety critical systems. Simplicity reduces the risk of developing a program whose
meaning is different from its modeled specification. Besides simplicity the languages
must also support predictability, security and boundedness.

The Whalen and Heimdahl paper [6] outlines a set of requirements for code
generation to obtain higher level of confidence in the correctness of the translation
process. They describe Requirements State Machine Language (RSML) and identify five
principles of “trustworthiness”: (a) formal definition of both model and code syntax and
semantics, (b) translation to maintain the meaning of the specification (c) formal
verification of the translator implementation (d) rigorous testing, (e) well structured
generated code traceable to the original specification. The translator uses a simplified
imperative target language Safety-critical iMPerative Language (SMPL), which does not
support statements such as goto, break, continue and the pointers. This makes it more
reliable for safety critical systems as compared to C and C++. Since the constructs in
RSML have an exact mathematical meaning, it is possible to directly perform
equivalence proofs between these constructs in RSML specification and their equivalents
in SMPL [6].

One of the ways to perform automatic code generation is through code generation
templates. For example, Codagen Architect tool enables the transformation of UML
models directly into code (C#, Java, C++). The tool allows the user to create code
generation templates using a template editor. The templates represent the building blocks
of code generation. In the tool, the code generation logic (transformation and validation
rules) is composed of XML tokens that are inserted into the template by selection from a
dynamic menu that displays tokens that are appropriate to the current context [8].

Another approach is used by SCADE [2,9] (Safety-Critical Application Development
Environment), a modeling and ACG tool by the Esterel Technologies. SCADE uses high-
level graphical notations for modeling: data flow blocks and state machines. The model
operations are based on declarative, synchronous paradigm, where system output depend
on inputs and state for each of the time steps. Internally, SCADE blocks are represented
as textual synchronous language LUSTRE. Subsequently, SCADE/KCG code generator
automatically produces simple C code that does not support loops, recursion, jumps and
dynamic variables. The translation process from LUSTRE to C is based upon
scientifically proven algorithms that the code generator directly implements.

ACG has found applications in some industries. SCADE has been used for the
development of critical software embedded in the Airbus aircraft. “The SCADE Code
Generator (KCG) is qualified for DO-178B Level A, the highest level of assurance,
enabling this technology to become a de-facto standard in civilian avionics” [2]. The
qualification enables developers to eliminate low-level testing of SCADE-generated code
and thus helps in 30-60% reduction of the project costs. The SCADE code generation tool

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 44

has also been recently certified as a product under IEC 61508 (SIL4) for use in
automotive industries [7]. SCADE enables the immediate creation of production-quality,
embeddable code.

3. Model Analysis

3.1. Approach

To verify that the behavior of model constructs is the same as the behavior of the
corresponding code constructs, we identify the relevant model and code
constructs/primitives. This information would provide the framework for proposed work
to establish semantics consistency between model and code. An experiment was
conducted, using Statemate, to illustrate the proposed approach. The tool’s modeling
notation allows developer to represent both static structure and dynamic behavior of the
application. The tool was used to create a set of models reflecting the supported
constructs. C code for these models was generated using the ACG feature of the tool. The
code components were analyzed manually to determine their correspondence to the
model. The objective has been to find answers to the following questions:

1. How are states, data, events and activities represented in the code?
2. How the names of model components correspond to the names in the code?
3. How are transitions between states represented in the code?
4. How is concurrency in the model (between statecharts) addressed in the code?

Each of the model constructs supported by the tool has been modeled in isolation (except
the cases where the complete isolation was not feasible: e.g. a top-level state must be
associated with an activity). A relation table between the model and code elements is
presented below. Table 1 presents all the model constructs identified in the selected tool,
the way how each construct is translated in terms of the generated program constructs,
and examples of the code snippets representing specific model constructs.

Another experiment was conducted to verify the correspondence of the behavior of
the model and the generated code. The model was supplied with inputs during simulation
to observe the sequence of transitions from one state to another (and the related actions).
A control flow graph was created for the code generated from the model. This graph was
traced for the same inputs and the sequence of transitions was analyzed. This limited
experiment has been designed to show behavior equivalency between the model and the
generated code.

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency

45

Table 1: Relation between Model and Code Artifacts

Model Element Code
Element

Example

Internal Activity represents a logical view
or organization of a system; it interacts
with the external environment receiving
input stimuli and producing signals
consumed by the environment

Unique
identifier
declared as an
extern activity

Model:
Activity KEEP_TIME
Code:
extern activity KEEP_TIME

Event is a trigger and/or condition that
defines the criteria for a change in system
state

Unique
identifier
declared as an
extern event

Model:
Event INCREMENT_HOURS
Code:
extern event INCREMENT_HOURS

Data is an integer, real, string, bit, bit-
array, record, union or user-defined type

Unique
identifier
declared as an
extern
variable

Model:
Data-item HOURS
Code:
extern int HOURS

Control Activity represents a link between
an internal activity and a statechart
Basic – one variable/procedure
Non-Basic – more than one
variable/procedure

One or more
Variables of
type
Enumeration

One or more
Procedures

Model:
Basic Control Activity CLOCK_CMTL
Code:
typedef enum
{notaChart_CLOCK_CMTL,
CLOCK_CMTL}
tpChart_CLOCK_CMTL_states;
void exec_Chart_CLOCK_CMTL()

State is a condition (or mode of operation)
of the system in particular point in time
Basic – a state that has no children or sub-
states
Non Basic – a state that has sub-states

One Constant
(basic)

One Constant
One Variable
of type
Enumeration
One
Procedure
(non-basic)

Model:
Basic State SET
Non Basic State ON with two substates
SET and RUN
Code:
#define conSETst 0
#define conONst 0
typedef enum {notaONst, SET, RUN}
tpONst_states;
void exec_ONst()

Basic Transition
(Transition with Action)
where Action specifies what to do as a
consequence of an event occurring

Three
Statements
(two notify
and one new
state
assignment;
plus
additional
action
statements)

Model:
Basic Transition from source state SET
to target state RUN
Code:
notify(scope_id, conSET,FALSE);
notify(scope_id, conRUN,TRUE);
ONst_isin = RUN;

Conditional Transition represents the
transition between states based on specific
guard condition

If block
containing
three
statements
(two notify
and one new
state
assignment)

Model:
Transition from source state SET to
target state RUN only when condition
POWER is true.
Code:
if (POWER) {
notify(scope_id, conOFF,FALSE);
notify(scope_id, conONst,TRUE);
CLOCK_CNTLst2_isin = ONst;
}

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 46

3.2. Static Consistency

The section elaborates on modeling constructs provided by the tool. The mapping
between the model and code elements indicate that there is traceability between model
and code and that the constructs represented in the model have corresponding constructs
in the code. However, Statemate does not support concurrency. Two states that are
defined as concurrent in the model will be executed in a sequential manner. The tool does
not implement two concurrent states as different threads in the code generated.

3.2.1. Internal activities and events

Internal activities and events are defined external to the file in which they are used. They
use keyword ‘extern’ for declaration. For example, the activity KEEP_TIME and event
INCREMENT_HOURS are defined as follows in the code.

extern activity KEEP_TIME;
extern event INCREMENT_HOURS;

The event is defined as a Boolean and activity is defined as a structure in types.h file.

3.2.2. Data-items

Data is represented as external variable. It is defined using keyword extern. For example
data items HOURS and MINUTES are expresses as following in the code.

extern int HOURS;
extern int MINUTES;

3.2.3. State

A Basic State is defined by a constant reflecting its name (con<start state name>). A
Non-Basic State is a state that is further decomposed into sub states. Every non-basic
state has an EXEC procedure that activates all the state-logic within a single execution
cycle. The procedure takes care of in state transitions, static reactions, and activation of
sub-states. Also every non-basic state has a status variable that indicates what sub-state is
currently active. The status type is an enumerated type. The variable is in the form
<statename>isin. Every state (basic or non basic) has a constant associated with it in the
form con<state name>. For an example, see the code above exec_CLOCK_CNTL.

3.2.4. Transitions

In a transition, the parent state status variable is changed to indicate the activation of the
target sub-state. The constant associated with source state (con<start state name>) is
made false and the constant associated with target state (con<target state name>) is
made true. A Basic Transition (within state ON) from source state SET to target state

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 47

RUN will produce the following code. A Conditional Transition would have the code
embedded within if block.

 notify(scope_id,conSET,FALSE);
 notify(scope_id,conRUN,TRUE);
 ONst_isin = RUN;

In a Transition with Action, in addition to statements for a basic transition, the statements
specified as actions in the model are also executed. The Conditional Transition contains a
condition that must be satisfied for the transition to occur from the source state to the
target state.

3.2.5. Control Activity

A control activity represents a link between an internal activity and a statechart. The
statechart represents behavior of the internal activity. The following example model
shows the statechart associated with CLOCK_CNTL Non-Basic Control Activity.

Fig. 1: Statechart of Non-Basic Control Activity clock_cntl

A control activity has a corresponding procedure in the code called exec_Chart_<control
activity name>. It also has an associated variable that indicates whether the control
activity is in active state or not. The variable type is enumerated type. Variable name has
form, Chart_<control activity name>_isin, in code. The procedure exec_Chart_<control
activity name> describes what happens when an activity is executed. It controls the
activation of the statechart associated with the control activity.

A non-basic control activity is a control activity that has more than one state in the
statechart it encompasses. A non-basic control activity has an additional procedure
associated with it in the code. The module name is of the form exec_<control activity
name>. This procedure implements the behavioral logic as described in the statechart
encompassed within the control activity. It also has an additional variable of the form
<control activity name>_isin. It indicates what state in the statechart is currently active.
The variable type is enumerated type. The enumeration constants for this enumerated

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 48

data type are the names of the states in the statechart and default constant indicating the
statechart is not active.

typedef enum {notaCLOCK_CNTL, OFF, ONst} tpCLOCK_CNTL_states;

typedef enum {notaChart_CLOCK_CNTL, CLOCK_CNTL}tpChart_CLOCK_CNTL_states;

tpCLOCK_CNTL_states CLOCK_CNTL_isin = notaCLOCK_CNTL;
tpChart_CLOCK_CNTL_states
Chart_CLOCK_CNTL_isin = notaChart_CLOCK_CNTL;

void exec_CLOCK_CNTL()
{
 if(CLOCK_CNTL_isin == OFF) {
 notify(scope_id,conOFF,FALSE);
 notify(scope_id,conONst,TRUE);
 CLOCK_CNTL_isin = ONst;
 }
} /* exec_CLOCK_CNTL */

void exec_Chart_CLOCK_CNTL()
{
 switch (Chart_CLOCK_CNTL_isin) {
 case notaChart_CLOCK_CNTL:
 notify(scope_id,conCLOCK_CNTL,TRUE);
 Chart_CLOCK_CNTL_isin = CLOCK_CNTL;
 notify(scope_id,conOFF,TRUE);

 CLOCK_CNTL_isin = OFF;
 break;
 case CLOCK_CNTL:
 exec_CLOCK_CNTL();
 break;
 default:
 break;
 }
} /* exec_Chart_CLOCK_CNTL */

3.3. Dynamic Consistency

To provide illustration of dynamic behavioral consistency, another experiment was
conducted. A model was created with a statechart representing simple up-down counter
consisting of three states (CHECKING, UP_COUNTER and DOWN_COUNTER).
Transitions occur from one state to another occur depending on the value of the input
variable provided by the user during execution.

The control flow graph of the generated program shows the sequence of execution of
the code. Suppose the value of input variable C is 2. The code executes statements for
transitioning from CHECKING state to UP_COUNTER state. It increases the value of
variable N to 10 and then executes code for transitioning to CHECKING state from
UP_COUNTER state. During this transition it sets the value of C to -1. Next, code for
transitioning from CHECKING state to DOWN_COUNTER state is executed. The value
of N is decreased until it is zero and then transition from DOWN_COUNTER to
CHECKING is executed. During this transition the value of C is set to 1. Again, the

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 49

transition from CHECKING to UP_COUNTER is made and the same set of statements is
executed in the code. The model is provided with the same input (C=2) during
simulation. It is observed that the same sequence of transitions occur between
CHECKING, UP_COUNTER and DOWN_COUNTER states.

Fig. 2: Statechart showing up-down counter

The same experiment is conducted using the value of input variable C set to –1. It is

observed that the sequence of transitions in the model and code are the same. This
implies that there is behavioral equivalence between model and code.

The issue of non-determinism has huge impact on safety of the software product. In
Statemate, non-determinism occurs when two transitions are triggered from a common
state at the same time. In this case, the model simulation informs the user that non-
determinism was detected and will let him or her select the transition to be executed. On
the other hand, the generated code will select a transition arbitrarily and upon specific
request will also issue a message that non-determinism was encountered.

The described experiment is based on a very simple model. It is proposed that during
the future research work more complex models are created and used for experiments.

4. Future Work

The objective of the research is to verify semantic consistency between model and code
generated using ACG tools. The mapping identified between model constructs and code
segments explains how a specific construct in model is reflected in code. This
information is important when analyzing whether the behavior and meaning of a model
construct is the same as its corresponding code segment. The semantic consistency can be
confirmed if the sequence of execution of transitions between states in the model is the

Kornecki, Johri / Automatic Code Generation: Model-Code Semantic Consistency 50

same as that represented in the code. Models in different configurations and more formal
evaluation of pre/post-conditions and invariants can be used to address this concern.

The future work also includes identifying several popular software development
tools, with ACG based on various principles (formal, semi-formal, frames, full
translation) and creating a map between model and code elements as shown in the paper.
This information can then be used to perform a range of experiments to check semantic
consistency. The purpose of using more than one ACG tool for future research is to
ensure that the results are valid for ACG technique in general and not a particular tool.

The research has been exploring the use of COTS testing tools to identify the
resulting code coverage in terms of the segments/lines of code executed for a specific test
case i.e. defined combination of input. The same input data is applied to the model to
verify the sequence of model transitions and their consistency with those observed during
the code execution.

Acknowledgments. Acknowledgements are due to Boston Scientific/CRM Guidant,
Inc. St. Paul, MN, for their support of this research.

References

1. L. Allison, A Practical Introduction to Denotational Semantics, Cambridge University Press,
1986

2. B. Dion, Correct-By-Construction Methods for the Development of Safety Critical
Applications, SAE World Congress, Detroit, MI, March 2004

3. A. Kornecki, J. Erwin, Characteristics of Safety Critical Software, 22nd International System
Safety Conference, System Safety Society, Providence, RI, August 2004

4. D. Crocker, posting on Automatic Code Generation in Safety Critical Software Development.
23 Jan. 2004. <http://www.cs.york.ac.uk/hise/safety-critical-archive/2004/0027.html>
retrieved 2 Oct. 2005

5. C. O'Halloran. Issues for the Automatic Generation of Safety Critical Software, 15th IEEE
International Conference on Automated Software Engineering, 2000, p. 277,

6. M. Whalen, M. Heimdahl, An Approach to Automatic Code Generation for Safety-Critical
Systems, 14th IEEE International Conference on Automated Software Engineering, 1999, p.
315

7. J. Gärtner, Code Generator Schemes Aid Safety-Critical Code Development. COTS Journal,
April 2005.

8. Codagen Architect, <http://www.codagen.com/products/architect/faq.htm> retrieved 27 Nov.
2005

9. W. Hohman, Supporting Model-Based Development with Unambiguous Specifications,
Formal Verification and Correct-By-Construction Embedded Software, SAE World Congress,
Detroit, MI, March 2004

	Introduction
	Background
	Model Analysis
	Approach
	Static Consistency
	Internal activities and events
	Data-items
	State
	Transitions
	Control Activity

	Dynamic Consistency

	Future Work
	Acknowledgments. Acknowledgements are due to Boston Scientific/CRM Guidant, Inc. St. Paul, MN, for their support of this research.
	References

