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Abstract:  

 
Automatic translation or code generation of software models to code may help alleviate problems 
associated with manual coding effort. This paper emphasizes the importance of attaining a high 
level of assurance that the process of automatically translating model to code is correct. It illustrates 
modeling experiments performed using Statemate (iLogix) to establish a correspondence between 
model elements and code constructs. The research is a step towards achieving assurance of 
semantic consistency between model and generated code. 
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1.   Introduction 

Automatic code generation (ACG) helps to increase effectiveness of complex software 
production by reducing the cost and time associated with the coding effort. However, it is 
extremely important that the generated code faithfully reflects the model from which it is 
produced. The presented paper is an attempt to examine means to assess the semantic 
consistency between model and code so that sufficient reliance can be placed on ACG.  

As syntax defines the structure of legal constructs of a modeling or programming 
language, semantics gives the meaning of these constructs. Both model and the resulting 
program can be represented as functions mapping inputs satisfying some properties into 
results satisfying other properties. The denotational semantics is based on constructing 
formal mathematical object expressing the meaning of the system. The operational 
semantics describe how a valid model (or a program) is interpreted as sequences of 
computational steps. These sequences then represent the meaning of the model (or 
program) [1]. 

In the case of automatic code generation, semantics refer to the meaning of modeling 
elements (symbols) and how they are interpreted. Dion in his paper [2] writes: “The 
semantics of textual or graphical formalism define the meaning of program written in it.” 
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Software development tools represent the specification/design of a system in form of 
models using variety of graphical notations (statecharts, class diagrams, sequence 
diagrams, flowcharts, etc.). These models use specific symbols to define programming 
and run-time constructs. However, the interpretation of their behavior depends on the 
particular tool implementation. The same model implemented in three different tools may 
exhibit slightly varying behavior as shown in [3]. To make an argument that the model 
and code are semantically consistent, all the constructs of the model must be shown to 
have a corresponding construct in code (and vice versa). Also, the behavior of the model 
is the same as the behavior of the code when executed. This can be shown by either 
manual or automatic analysis of both: the model and the code from perspective of 
fulfilling all pre- and post conditions, invariants and assertions. 

On the University of York exchange forum [4] Crocker writes: “if the model from 
which code is generated completely describes the required behaviors and is written in a 
notation with well-defined semantics, then there is no fundamental difference between 
this form of code generation and a compiler. Therefore, immature automatic code 
generators should not be trusted, just as in case of immature compilers”. The semantic 
consistency is an important aspect in demonstrating that the code generated faithfully 
reproduces the intent of the model representing system design. 

Several commercial tools are available to provide support for translation of formal or 
semi formal specification to executable code. Typical examples are: Statemate and 
Rhapsody from iLogix, Tau from Telelogics, Matlab/Simulink/Stateflow/RTW from 
Mathworks, RoseRT from Rational/IBM, SCADE from Esterel Technologies and many 
others. However, there is reason to distrust an automatically generated code: (a) the 
specification language and/or target language may lack formal specification, (b) the 
translation may not be formally defined, and (c) the translation tool may be incorrectly 
implemented. Therefore, the generated code cannot be blindly trusted unless there is an 
appropriate argument to the contrary. The paper outlines the methodology used to 
evaluate correctness of the translation from model to code. This research is another step 
in making code generation more acceptable for safety critical systems in regulated 
industry. 

2.   Background 

It is acknowledged that the traditional approach of hand coding is not ideal and as 
software increases in complexity, this method and testing may be inadequate for 
embedded systems. Model-Based Development (MBD) methodologies and automatic 
code generation have emerged, shifting the focus of the software development process. 
MBD allows verification of the software specification at the model level and reduces 
manual coding. ACG also gives an engineer the opportunity to focus on the high-level 
design issues and on better understanding of the problem.  

According to O’Halloran [5], “automatic code generation is viewed with suspicion, to 
some extent unfairly, partly because the ‘development process’ can be easily changed 
with little or no visibility to an auditor. Another reason is that if the automatic code 
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generator is a black box commercial tool then there is no human understanding of what is 
being generated. If the commercial tool changes every six months then generated code 
could be subtly different for the same input to the code generator.” For ACG tool used for 
safety critical software, the modeling and target language must be simple and suitable for 
safety critical systems. Simplicity reduces the risk of developing a program whose 
meaning is different from its modeled specification. Besides simplicity the languages 
must also support predictability, security and boundedness. 

The Whalen and Heimdahl paper [6] outlines a set of requirements for code 
generation to obtain higher level of confidence in the correctness of the translation 
process. They describe Requirements State Machine Language (RSML) and identify five 
principles of “trustworthiness”: (a) formal definition of both model and code syntax and 
semantics, (b) translation to maintain the meaning of the specification (c) formal 
verification of the translator implementation (d) rigorous testing, (e) well structured 
generated code traceable to the original specification. The translator uses a simplified 
imperative target language Safety-critical iMPerative Language (SMPL), which does not 
support statements such as goto, break, continue and the pointers. This makes it more 
reliable for safety critical systems as compared to C and C++. Since the constructs in 
RSML have an exact mathematical meaning, it is possible to directly perform 
equivalence proofs between these constructs in RSML specification and their equivalents 
in SMPL [6]. 

One of the ways to perform automatic code generation is through code generation 
templates. For example, Codagen Architect tool enables the transformation of UML 
models directly into code (C#, Java, C++). The tool allows the user to create code 
generation templates using a template editor. The templates represent the building blocks 
of code generation.  In the tool, the code generation logic (transformation and validation 
rules) is composed of XML tokens that are inserted into the template by selection from a 
dynamic menu that displays tokens that are appropriate to the current context [8]. 

Another approach is used by SCADE [2,9] (Safety-Critical Application Development 
Environment), a modeling and ACG tool by the Esterel Technologies. SCADE uses high-
level graphical notations for modeling: data flow blocks and state machines. The model 
operations are based on declarative, synchronous paradigm, where system output depend 
on inputs and state for each of the time steps. Internally, SCADE blocks are represented 
as textual synchronous language LUSTRE. Subsequently, SCADE/KCG code generator 
automatically produces simple C code that does not support loops, recursion, jumps and 
dynamic variables. The translation process from LUSTRE to C is based upon 
scientifically proven algorithms that the code generator directly implements. 

ACG has found applications in some industries. SCADE has been used for the 
development of critical software embedded in the Airbus aircraft. “The SCADE Code 
Generator (KCG) is qualified for DO-178B Level A, the highest level of assurance, 
enabling this technology to become a de-facto standard in civilian avionics” [2]. The 
qualification enables developers to eliminate low-level testing of SCADE-generated code 
and thus helps in 30-60% reduction of the project costs. The SCADE code generation tool 
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has also been recently certified as a product under IEC 61508 (SIL4) for use in 
automotive industries [7]. SCADE enables the immediate creation of production-quality, 
embeddable code. 

3.   Model Analysis 

3.1.   Approach 

To verify that the behavior of model constructs is the same as the behavior of the 
corresponding code constructs, we identify the relevant model and code 
constructs/primitives. This information would provide the framework for proposed work 
to establish semantics consistency between model and code. An experiment was 
conducted, using Statemate, to illustrate the proposed approach.  The tool’s modeling 
notation allows developer to represent both static structure and dynamic behavior of the 
application. The tool was used to create a set of models reflecting the supported 
constructs. C code for these models was generated using the ACG feature of the tool. The 
code components were analyzed manually to determine their correspondence to the 
model. The objective has been to find answers to the following questions: 

1. How are states, data, events and activities represented in the code?  
2. How the names of model components correspond to the names in the code? 
3. How are transitions between states represented in the code? 
4. How is concurrency in the model (between statecharts) addressed in the code? 

 
Each of the model constructs supported by the tool has been modeled in isolation (except 
the cases where the complete isolation was not feasible: e.g. a top-level state must be 
associated with an activity). A relation table between the model and code elements is 
presented below. Table 1 presents all the model constructs identified in the selected tool, 
the way how each construct is translated in terms of the generated program constructs, 
and examples of the code snippets representing specific model constructs. 

Another experiment was conducted to verify the correspondence of the behavior of 
the model and the generated code. The model was supplied with inputs during simulation 
to observe the sequence of transitions from one state to another (and the related actions). 
A control flow graph was created for the code generated from the model. This graph was 
traced for the same inputs and the sequence of transitions was analyzed. This limited 
experiment has been designed to show behavior equivalency between the model and the 
generated code. 
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Table 1: Relation between Model and Code Artifacts 

Model Element  Code 
Element 

Example 

Internal Activity represents a logical view 
or organization of a system; it interacts 
with the external environment receiving 
input stimuli and producing signals 
consumed by the environment 

Unique 
identifier 
declared as an 
extern activity 

Model: 
Activity KEEP_TIME  
Code:  
extern activity KEEP_TIME 

Event is a trigger and/or condition that 
defines the criteria for a change in system 
state 

Unique 
identifier 
declared as an 
extern event 

Model: 
Event INCREMENT_HOURS 
Code: 
extern event INCREMENT_HOURS 

Data is an integer, real, string, bit, bit-
array, record, union or user-defined type 

Unique 
identifier 
declared as an 
extern 
variable 

Model:  
Data-item HOURS 
Code: 
extern int HOURS 

Control Activity represents a link between 
an internal activity and a statechart  
Basic – one variable/procedure 
Non-Basic – more than one 
variable/procedure 

One or more 
Variables of 
type 
Enumeration 
 
One or more 
Procedures 

Model: 
Basic Control Activity CLOCK_CMTL 
Code: 
typedef enum 
{notaChart_CLOCK_CMTL, 
CLOCK_CMTL} 
tpChart_CLOCK_CMTL_states; 
void exec_Chart_CLOCK_CMTL() 

State is a condition (or mode of operation) 
of the system in particular point in time  
Basic – a state that has no children or sub-
states 
Non Basic – a state that has sub-states 

One Constant  
(basic) 
 
One Constant 
One Variable 
of type 
Enumeration 
One 
Procedure 
(non-basic) 
 

Model: 
Basic State SET 
Non Basic State ON with two substates 
SET and RUN 
Code: 
#define conSETst 0 
#define conONst 0 
typedef enum {notaONst, SET, RUN} 
tpONst_states; 
void exec_ONst() 

Basic Transition 
(Transition with Action) 
where Action specifies what to do as a 
consequence of an event occurring 

Three 
Statements 
(two notify 
and one new 
state 
assignment;  
plus 
additional 
action 
statements) 

Model: 
Basic Transition from source state SET 
to target state RUN 
Code: 
notify(scope_id, conSET,FALSE); 
notify(scope_id, conRUN,TRUE); 
ONst_isin  =  RUN; 

Conditional Transition represents the 
transition between states based on specific 
guard condition 

If block 
containing 
three 
statements 
(two notify 
and one new 
state 
assignment) 
 

Model: 
Transition from source state SET to 
target state RUN only when condition 
POWER is true. 
Code: 
if (POWER) {   
notify(scope_id, conOFF,FALSE); 
notify(scope_id, conONst,TRUE); 
CLOCK_CNTLst2_isin  =  ONst; 
} 
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3.2.   Static Consistency 

The section elaborates on modeling constructs provided by the tool. The mapping 
between the model and code elements indicate that there is traceability between model 
and code and that the constructs represented in the model have corresponding constructs 
in the code. However, Statemate does not support concurrency. Two states that are 
defined as concurrent in the model will be executed in a sequential manner. The tool does 
not implement two concurrent states as different threads in the code generated. 

3.2.1.   Internal activities and events 

Internal activities and events are defined external to the file in which they are used. They 
use keyword ‘extern’ for declaration. For example, the activity KEEP_TIME and event 
INCREMENT_HOURS are defined as follows in the code. 
 

extern activity KEEP_TIME; 
extern event INCREMENT_HOURS; 

 
The event is defined as a Boolean and activity is defined as a structure in types.h file. 

3.2.2.   Data-items 

Data is represented as external variable. It is defined using keyword extern. For example 
data items HOURS and MINUTES are expresses as following in the code. 
 

extern int HOURS; 
extern int MINUTES; 

3.2.3.   State 

A Basic State is defined by a constant reflecting its name (con<start state name>). A 
Non-Basic State is a state that is further decomposed into sub states. Every non-basic 
state has an EXEC procedure that activates all the state-logic within a single execution 
cycle. The procedure takes care of in state transitions, static reactions, and activation of 
sub-states. Also every non-basic state has a status variable that indicates what sub-state is 
currently active. The status type is an enumerated type. The variable is in the form 
<statename>isin. Every state (basic or non basic) has a constant associated with it in the 
form con<state name>. For an example, see the code above exec_CLOCK_CNTL. 

3.2.4.   Transitions 

In a transition, the parent state status variable is changed to indicate the activation of the 
target sub-state. The constant associated with source state (con<start state name>) is 
made false and the constant associated with target state (con<target state name>) is 
made true. A Basic Transition (within state ON) from source state SET to target state 
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RUN will produce the following code. A Conditional Transition would have the code 
embedded within if block. 
 
      notify(scope_id,conSET,FALSE); 
      notify(scope_id,conRUN,TRUE); 
      ONst_isin  =  RUN; 
 
In a Transition with Action, in addition to statements for a basic transition, the statements 
specified as actions in the model are also executed. The Conditional Transition contains a 
condition that must be satisfied for the transition to occur from the source state to the 
target state. 

3.2.5.   Control Activity 

A control activity represents a link between an internal activity and a statechart. The 
statechart represents behavior of the internal activity. The following example model 
shows the statechart associated with CLOCK_CNTL Non-Basic Control Activity. 
 

 
Fig. 1: Statechart of Non-Basic Control Activity clock_cntl 

 
A control activity has a corresponding procedure in the code called exec_Chart_<control 
activity name>. It also has an associated variable that indicates whether the control 
activity is in active state or not. The variable type is enumerated type. Variable name has 
form, Chart_<control activity name>_isin, in code. The procedure exec_Chart_<control 
activity name> describes what happens when an activity is executed. It controls the 
activation of the statechart associated with the control activity.  

A non-basic control activity is a control activity that has more than one state in the 
statechart it encompasses. A non-basic control activity has an additional procedure 
associated with it in the code. The module name is of the form exec_<control activity 
name>. This procedure implements the behavioral logic as described in the statechart 
encompassed within the control activity. It also has an additional variable of the form 
<control activity name>_isin. It indicates what state in the statechart is currently active. 
The variable type is enumerated type. The enumeration constants for this enumerated 
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data type are the names of the states in the statechart and default constant indicating the 
statechart is not active. 
 

typedef enum {notaCLOCK_CNTL, OFF, ONst} tpCLOCK_CNTL_states; 

typedef enum {notaChart_CLOCK_CNTL, CLOCK_CNTL}tpChart_CLOCK_CNTL_states; 
 
tpCLOCK_CNTL_states  CLOCK_CNTL_isin = notaCLOCK_CNTL; 
tpChart_CLOCK_CNTL_states 
Chart_CLOCK_CNTL_isin = notaChart_CLOCK_CNTL; 
 
void exec_CLOCK_CNTL() 
{ 
      if(CLOCK_CNTL_isin ==  OFF ) { 
       notify(scope_id,conOFF,FALSE); 
       notify(scope_id,conONst,TRUE); 
       CLOCK_CNTL_isin  =  ONst; 
      } 
} /* exec_CLOCK_CNTL */ 
 
void exec_Chart_CLOCK_CNTL() 
{  
   switch (Chart_CLOCK_CNTL_isin) { 
      case  notaChart_CLOCK_CNTL: 
       notify(scope_id,conCLOCK_CNTL,TRUE); 
       Chart_CLOCK_CNTL_isin  =  CLOCK_CNTL; 
       notify(scope_id,conOFF,TRUE); 
 
       CLOCK_CNTL_isin  =  OFF; 
     break; 
      case  CLOCK_CNTL: 
       exec_CLOCK_CNTL(); 
       break; 
      default: 
       break; 
   } 
} /* exec_Chart_CLOCK_CNTL */ 

3.3.   Dynamic Consistency 

To provide illustration of dynamic behavioral consistency, another experiment was 
conducted. A model was created with a statechart representing simple up-down counter 
consisting of three states (CHECKING, UP_COUNTER and DOWN_COUNTER). 
Transitions occur from one state to another occur depending on the value of the input 
variable provided by the user during execution. 

The control flow graph of the generated program shows the sequence of execution of 
the code. Suppose the value of input variable C is 2. The code executes statements for 
transitioning from CHECKING state to UP_COUNTER state. It increases the value of 
variable N to 10 and then executes code for transitioning to CHECKING state from 
UP_COUNTER state. During this transition it sets the value of C to -1. Next, code for 
transitioning from CHECKING state to DOWN_COUNTER state is executed. The value 
of N is decreased until it is zero and then transition from DOWN_COUNTER to 
CHECKING is executed. During this transition the value of C is set to 1. Again, the 
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transition from CHECKING to UP_COUNTER is made and the same set of statements is 
executed in the code. The model is provided with the same input (C=2) during 
simulation. It is observed that the same sequence of transitions occur between 
CHECKING, UP_COUNTER and DOWN_COUNTER states. 
 

 
Fig. 2: Statechart showing up-down counter 

 
The same experiment is conducted using the value of input variable C set to –1. It is 

observed that the sequence of transitions in the model and code are the same. This 
implies that there is behavioral equivalence between model and code. 

The issue of non-determinism has huge impact on safety of the software product. In 
Statemate, non-determinism occurs when two transitions are triggered from a common 
state at the same time. In this case, the model simulation informs the user that non-
determinism was detected and will let him or her select the transition to be executed. On 
the other hand, the generated code will select a transition arbitrarily and upon specific 
request will also issue a message that non-determinism was encountered. 

The described experiment is based on a very simple model. It is proposed that during 
the future research work more complex models are created and used for experiments. 

4.   Future Work 

The objective of the research is to verify semantic consistency between model and code 
generated using ACG tools. The mapping identified between model constructs and code 
segments explains how a specific construct in model is reflected in code. This 
information is important when analyzing whether the behavior and meaning of a model 
construct is the same as its corresponding code segment. The semantic consistency can be 
confirmed if the sequence of execution of transitions between states in the model is the 
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same as that represented in the code. Models in different configurations and more formal 
evaluation of pre/post-conditions and invariants can be used to address this concern. 

The future work also includes identifying several popular software development 
tools, with ACG based on various principles (formal, semi-formal, frames, full 
translation) and creating a map between model and code elements as shown in the paper. 
This information can then be used to perform a range of experiments to check semantic 
consistency. The purpose of using more than one ACG tool for future research is to 
ensure that the results are valid for ACG technique in general and not a particular tool. 

The research has been exploring the use of COTS testing tools to identify the 
resulting code coverage in terms of the segments/lines of code executed for a specific test 
case i.e. defined combination of input. The same input data is applied to the model to 
verify the sequence of model transitions and their consistency with those observed during 
the code execution. 
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