

ASSESMENT OF SOFTWARE SAFETY VIA CATASTROPHIC EVENTS
COVERAGE

Andrew J. Kornecki

andrew.kornecki@erau.edu
Department of Computing

Embry Riddle Aeronautical University
Daytona Beach, FL 32114

USA

ABSTRACT

As we depend more and more on software intensive
systems, safety is of paramount importance. This paper
attempts to address the often-neglected topic of safety
assessment for software intensive systems. A thorough
analysis of system hazards, and related catastrophic
events, allows the developers to assess the system safety
by identifying all potential catastrophic events and their
impact on requirements, design, and other mitigation
means. If we can present an argument that all hazards
leading to catastrophic events have been handled, we de-
facto establish a baseline for a “safe” system. This paper
proposes classification of hazards and catastrophic events
from the perspective of the software modules
implementing the target system functionality.

KEY WORDS

software safety, software development lifecycle, safety
critical systems

1. INTRODUCTION

The growing complexity of modern systems is due to the
ever-increasing power of computing devices. The
functionality that has been implemented in hardware is
now often ported to software providing a variety of
modifiable options and flexibility. However, the bad news
is that the software complexity is the main source of
potential hazards introduced by the software itself. These
hazards are due to the system entering an inconsistent or
unsafe state, which may occur in the case of a violation of
mutual exclusion, lack of synchronization, corrupted
communication, deadlock, etc. All these may lead to a
situation known as a catastrophic event, which in turn
may result in the system failure, if proper mitigation is not
used.
The primary objective of software safety is to guarantee
that software does not cause or contribute to a system

reaching such a hazardous state. Since such a guarantee is
rather difficult to accomplish, we will settle for second
best. We strive to design the system in such way that:

o it detects and takes corrective action if the
system reaches a hazardous state, and

o it mitigates possible damage in case a
catastrophic event occurs.

In this paper we discuss the differences between
reliability and safety, the impact and relation of software
to the overall system safety, and introduce the concept of
assessing the safety of a software intensive system
through analysis of the hazards and potential catastrophic
events. The measure of safety is defined as coverage of
the complete set of system hazards, including the
additional hazards introduced by the software itself.

2. RELIABILITY AND SAFETY

Reliability and safety are the major considerations for any
high integrity system operations. There is a need to define
and distinguish between these two closely related,
nevertheless different concepts. Both reliability and safety
are components of dependability [1] defined as a measure
of the overall quality of the system - or the property of the
system that justifies reliance on the system services. The
typical dependability attributes, in addition to reliability
and safety, are: availability, maintainability,
confidentiality, security, integrity, etc. The dependability
attributes are interrelated and their importance may vary.

A reliable system will assure continuity of its functions.
Reliability defines the property of the system to meet its
specified requirements. A system is thus reliable if it does
what the developers said it would do. A deviation from
the system requirements is treated as a failure. The failure
can be a situation when the system does not accept the
input, produces incorrect output, produces the output at
the wrong time (too early, too late), or simply does not do
what it “shall do” according to the requirements
documents. Reliability is most often defined in terms of
the probability that the system will be performing its

intended function, thus operating failure-free for a
specified period (or a number of missions). Reliability is
often identified by related measures like failure rate or its
inverse, mean time to failure. Given appropriate data,
various mathematical models allow us to derive a
quantitative reliability estimate. The subject, despite being
rather controversial when applied to software, has well-
established literature [2, 3].

Safety is when we are protecting human health, life and
environment. Safety is the property of a system that it will
avoid hurting someone or cause property loss or damage.
A system is safe if it does not cause the users to be injured
or killed, does not cause damage or destruction to any
connected equipment, does not cause a financial loss. The
system that does not work (is not reliable) may be
completely safe. Likewise, completely reliable system
may still injure someone as it may produce an output that
the developers never expected, thinking only in terms of
the system functionality rather than considering potential
hazards. The majority of real-time, embedded applications
control some dedicated system, thus controlling the power
that the system can dissipate. Systems with such
characteristics are called safety-critical or safety-related.
The representative literature positions are those of
Leveson, Storey, Herrmann, Friedman/Voas, Gardiner,
Bowen [4,5,6,7,8,9].

A rigorous approach to safety has been proposed by Kelly
with the “safety case” concept [10]. Rather than relying
on prescriptive standards and regulations, the burden is
shifted to the developers who are required to construct
and present arguments that their systems attain an
acceptable safety level. The arguments and related
supporting evidence constitute the “safety case''. The
authors of the “asymmetric” approach to the safety critical
software [11] attempted to define the most important
areas where software assessment should be concentrated,
suggesting an asymmetric allocation of resources.
Another project dealing with the issue of safety
assessment [12] involved building formal models and
integrating diverse evidence to provide quantitative safety
arguments. The research studied fuzzy sets, Bayesian
belief nets, and various probability models. A related
study dealt with issue of the context for software safety
assessment [13] recognizing the fact that software is
deterministic and its behavior depends not only on the
inputs but also the environment in which software
operates.

It is a common view for engineers involved in reliability
studies that reliability and safety are identical. However,
many accidents may happen without evident system
failure resulting from a combination of environmental
events, procedural mistakes, and system faults. One needs
to emphasize that reliability is a bottom-up activity
focusing on system failures while safety is top-down
approach concentrating on system hazards.

3. SOFTWARE SAFETY ANALYSIS

With full understanding that safety is a critical system
issue, there is still a need to analyze the system safety
from the software viewpoint. The system Preliminary
Hazard Identification (PHI) and the subsequent
Preliminary Hazard Analysis (PHA) are the starting point
for software safety analysis. They are designed to identify
and categorize the hazards or potential mishaps that may
result from system operation. Domain specialists and
safety engineers must identify as many hazards as
possible. Classifications of the hazard severity may range
from catastrophic to critical to marginal to negligible.
Also, the frequency of hazards can be categorized as e.g.
frequent, moderate, occasional, remote, unlikely, or
incredible. Depending on this classification, appropriate
measures to handle the hazards are undertaken.

Once the hazards have been determined, we consider
various faults, events, and parameter deviations. The
principal objective of Software Fault Tree Analysis
(SFTA) is to show that the software logic will not produce
system safety failures. We determine all possible
environmental conditions and events, which could lead to
these software-induced failures. The basic procedure is to
assume that the software output (lack thereof, wrong
timing) caused a safety violation and then work backward
to determine the possible reasons this output is produced.

The initial system safety analyses, conducted during the
system requirements phase when the role of software is
being defined, begins with identification of hazards
associated with a particular design concept and/or
operation. These initial analyses and subsequent system
and software safety analyses identify when software is a
potential cause of a hazard or when it will be used to
support the control of a hazard. Such software is classified
as safety-critical, which then makes it subject to software
safety analysis.

Software Safety Analysis is the development activity
designed to identify the software components (programs,
modules, routines, functions, objects, data structures) that
are critical to system safety, and thus must be examined in
depth. These software components are identified as safety
critical. It should be noted that the entire software must be
analyzed at least to the extent necessary to determine its
impact upon the safety critical components. All programs,
routines, modules, tables, or variables which control or
directly/indirectly influence the safety critical code shall
also be classified as safety critical. Additionally, some or
all of the software tools (e.g., compilers, support software,
etc.) may also have to be designated as "critical". All
safety critical software elements will be analyzed to the
source/object code level by the follow-up software
hazardous effect analysis.

It is clear that software by itself is not hazardous.
However, some software components may be considered

hazardous when interfaced with a certain type of system.
A typical example of what we call safety critical software
is software controlling and monitoring some undesired or
uncontrolled release of energy restricted by hardware
components. Another example is software that provides
indirect control or data for safety critical processes, thus
leading to potentially erroneous decisions by human
operators. The Software Hazardous Effects Analysis
(SHEA) is the activity, which enables us to identify the
safety significant and safety critical software at the system
component/unit level. We use the SHEA to identify
hazards associated with the role of a software item in
performing the functions to deduce the possible causes, to
identify safety requirements for design and test, and to
control the hazard causes.

Considering the above, the starting place for the analysis
is the code responsible for the output. We need to
determine the current values of the code variables and
then backtrack deducing how the program reached this
part of the code. To be able to associate appropriate
software components with identified hazards, it is critical
to have specific and traceable safety requirements. The
level of detail required for such analysis may be limiting
factor. It is recommended for use only for the software
components directly responsible for very critical and
potentially catastrophic events.

The industries dealing on an everyday basis with software
safety address the issues of software hazard risk
assessment through appropriate standards: military (MIL-
STD-882D, DEF00-55 and 56), aviation (DO178B),
aerospace (NASA-STD-8719.13A), nuclear (IEC60880,
ANS ANSI/IEEE 7.4.3.2), and programmable electronic
(IEC61508) standards. The website
http://www.12207.com/ provides a list of standards
applicable to medical devices (ANSI/AAMI SW 68, FDA
Guidance 1-3, IEC60601-1-1 and-4, ISO13485,
ISO14971).

To reduce the risks associated with the identified hazards
we may use different approaches. In the order of
preference we can:

o Modify the requirement specification
o Modify the design
o Integrate additional safety features
o Include additional warning devices
o Modify the operating procedures and training

Modification of requirements allows for early handling of
hazards while the modification of operating procedures is
an “after fact” activity – and is due to human
imperfection. It is clear that the risk reduction is more
effective and less costly when the hazards are discovered
early in the lifecycle. The bad news is that for any system
of reasonable complexity, it is likely that not all hazards
can be predetermined. Consequently, additional activities
may be required to assure system safety. These include,
but are not limited to, partitioning and protection, safe

kernels, watchdogs and procedural solutions. In addition,
there is an increasing body of experience with application
of formal methods and a model-based approach to support
safety of the software-intensive product.

4. SAFE SOFTWARE

Software is assumed to be safe, if it is highly unlikely that
it could produce an output that when interacting with the
system would cause a loss of physical property, physical
harm, and loss-of-life for the system that the software
controls. The term “software safety” refers to a variety of
development and assessment processes that attempt to
accomplish this goal. However, software safety is a sub-
problem of system safety. The objective of software fault
tolerance techniques is to survive the faults during the
run-time. By this measure, the fault tolerance can be
treated as a sub-problem of system safety.

For each physical system we can identify a set of
functions that it performs. For each function we may
identify zero or more catastrophic events that must be
prevented. If the software controls directly or indirectly a
specific function, we must design the code in such way
that the output will not lead to the undesired event. The
objective of software safety assessment is to demonstrate
the above. The weak points of this reasoning are that: (a)
system safety (or a lack thereof) must be completely and
unambiguously defined before software safety can be
tackled, (b) the software “responsibility” must be
completely and unambiguously defined. For example, a
system placing incoming commands in a linked list for
future execution may fail after the list exceeds some
number of entries (for systems with memory limitation).
This situation must be accounted for in the software
development phase and additional code must be provided
for remedial action.

Given the relationship between software components, one
may use for example Fault Tree Analysis to assure that
the software subsystem is safe. This popular graphical
method starts with the top-event related to the identified
hazard and works backwards to determine the causes. To
guarantee that the entire software system does not
introduce interference, we use concepts of protection via
firewalls. Firewalls isolate critical requirements modules
from modules that do not contribute to function affected
by critical events. Non-critical software components must
not affect the critical components in unpredictable
fashion. Such integrity must be valid under both: normal
and abnormal operation (i.e., when the faults manifest
themselves).

5. SAFETY METRICS

There is no accepted agreement on software safety
measures and metrics. The critical argument here is that
safety is the system issue. The other argument is
attributed to the fact that the safety is defined in the

negative: “do not harm”. It is much easier to show that
something happens than that something does not happen.

Then, what can we accept as Software Safety Metrics?

Figure 1: Relationship between system-software artifacts

We propose a software safety assessment related to the well-
known concept of coverage. Assume that, as a result of
system hazard analysis, we create a comprehensive set of all
hazards (H) consisting of elements h1 to hn and we identify
the related set of catastrophic events (E) consisting of
elements e1 to em. Assume we have a complete set of
software requirements listing both functional and the quality
of service requirements that the software must implement
(R – a list of r1 to rk). It is imperative that the set R has
been created in such way that specific subset of R (say S,
consisting of elements s1 to sp) can be directly linked to
elements of H, i.e. there is a relation between S and H. The
relationships between the sets are depicted in Figure 1.

The software/firmware of the system is implemented by a
set of software components or modules (M). We review
each module of the set M from a triple perspective:
(a) Does it implement an element of S?
(b) Does it contribute to the defined hazards producing

an output leading to a catastrophic event in E?
(c) Does it contribute to any additional hazards (H’) and

the resulting catastrophic events (E’)?

Case (a) is a situation when the requirements are derived
from hazard analysis. In this case, the subset S is a part of
the defined requirements. Meeting the requirements,
which is a premise of system reliability, is in this case
also a base for safety assurance. However, two remaining
cases are pointing to the difference between reliability and
safety. In case (b) we need to apply rigorous techniques
for testing and verification. We should seek either design
or procedural solutions to eliminate and/or reduce the
hazard. In case (c) the lists H and E need to be modified
(by augmenting them with the H’ and E’, respectively). A

re-design, leading to modification of the set M, may be
necessary.

What are the rigorous techniques we postulate in case (b)?
The simplicity of the module is one of the best defense
lines. Reduced complexity makes the module both
readable and testable while simplifying the possible
interfaces between software modules. We need to identify
what possibly can go wrong with the module code by
analyzing such events as the deviation of the values,
deviation of timing, lack of synchronization, corrupted
communication, a potential for data loss, deadlock and
live-lock. Another typical guideline relates to reduction of
potential effect of common mode failures – a situation
when failure occurs as a result of faults in different
redundant modules. We generally accept avoiding single
point of failure, where the failure of a single component
may lead to the total system failure. We must not allow a
single hardware fault (e.g. lack of data, reversed bit) to
trigger an unrecoverable error. Other guidelines relate to
the determinism of software execution by use of simple
sequential structures, block-recovery redundancy and, if
feasible, two-level architecture. Fault injection is an
established and accepted technique that can be used for
the identified safety critical modules.

In a situation (c) when the additional hazards are
introduced, the objective would be either to eliminate
them or to mitigate their effect. The elimination would
rely on removing the causes of the hazard, which can be
done by better understanding how hazards were
introduced in the first place. For the hazards that cannot
be removed, it is essential to mitigate them. This can be
accomplished by adding additional components
(monitors, watchdogs, and redundancy measures –

H

E

system

H’

M

E’

R
S

implemented either in hardware or software). On the
hardware side, a concept known as safety core may be
used. The safety core is a separate circuitry of limited
functionality, designed to take over in a situation when
the system failure prevents continuation of safe operation.
A software solution may include a safety kernel – an
independent programming module that monitors the state
of the system to determine when potentially unsafe
system states may occur or when transitions to potentially
unsafe system states may occur. The safety kernel is
designed to prevent the system from entering the unsafe
state and return it to a known safe state. Obviously, the
operations of safety kernel are separated from operation
of the rest of the code. All the above-mentioned solutions,
in principle, increase software complexity thus somehow
contradicting the first rule of safe software: keep it
simple.

If all the events from the modified set E are accounted
for, we have achieved the required safety coverage. It is
evident, that the proposed assessment is based on very
meticulous hazard analysis leading to identification of the
sets H and E, and subsequent mapping of the sets into the
specific subset S of the software requirements (R),
traceable into subsequent design (M). This traceability
allows developers and testers to visualize the relations
between system components and hazards, which in turn
may lead to better understanding of the system safe
operation.

6. CONCLUSIONS

The safety assessment process for software intensive
system is an integral part of safety-critical development.
Typically, dedicated safety engineers, with a system
and/or hardware background, carry out the process.
Hazard analysis is elaborated at the system level and then
addressed in various aspects of the design by assigning
the handling of specific hazards to hardware and software,
as appropriate. The individuals involved should have an
appreciation of the software impact on system safety and
the potential hazards that the software may contribute
(due to such situations as deadlock, lack of
synchronization, corrupted data, or violation of mutual
exclusion). The resulting potential catastrophic events
must be added to the original, system-oriented list. Only
then, a thorough analysis of the design and the assurance
that the design choices will facilitate hazard mitigation
and prevent the occurrence of the catastrophic events can
we assess a measure of system safety. We need to stress
again that only comprehensive system hazard analysis,
extended to the software components, will allow
developers to create a comprehensive list of hazard – the
starting point for the proposed safety assessment.
Historical safety experience, lessons learned, trouble
reports, and accident and incident files are examples of
techniques to help in the hazard identification. Typically,
any organization developing safety critical products
collect such data as components of a successful system

safety effort. Many industries have published guidelines,
checklists, standards, and codes of practice that may
facilitate developing comprehensive hazard list.

The proposed approach attempts to give some
quantifiable, albeit binary in nature approach to system
safety: if all identified hazards and the related catastrophic
events are handled by the design, the system is considered
safe. Further work must be done to specify software
hazard analysis process and evaluate variety of
architectures supporting software intensive safety critical
systems.

7. ACKNOWLEDGEMENT

The presented work originated during the author’s
sabbatical leave with the Cardiac Rhythm Management,
Guidant Corporation, St.Paul, MN. The author would like
to express appreciation to all those that helped him to
understand the intricacies of true safety critical software.
Particular credit is due to Nader Kameli and Conrad
Sowder.

REFERENCES

1. B. Randell, J.C. Laprie, H. Kopetz and B. Littlewood,

editors, Predictably Dependable Computing Systems
(Springer-Verlag 1995, ISBN 3-540-59334-9)

2. J. Musa, A. Iannino, K, Okumoto, Software
reliability - measurement, prediction, application
(McGraw Hill, 1987, ISBN-0-07-044093)

3. H. Pham, Software reliability (Prentice Hall,
Springer, 2000, ISBN-0-9813-0884-0)

4. N. Leveson, Safeware - system safety and computers,
(Addison Wesley, 1995, ISBN-0-201-11972-2)

5. N. Storey, Safety critical computer systems (Addison
Wesley Longman, 1996, ISBN-0-201-42787-7)

6. D. Herrmann Software safety and reliability (IEEE
Computer Society, 1999, ISBN-0-7695-0299-7)

7. M.A. Friedman, J.M. Voas, Software assessment:
reliability, safety, testability (John Wiley and Sons,
New York, 1995, ISBN-0-471-01009-X)

8. S. Gardiner, Testing safety-related software – a
practical handbook (Springer, 1998, ISBN-1-85233-
034-1)

9. J. Bowen, M. Hinchey, High integrity system
specification and design (Springer 1999, ISBN-1-
85233-053-8)

10. T.P.Kelly, Arguing Safety - A Systematic Approach to
Safety Case Management, PhD Thesis, Department
of Computer Science Green Report YCST 99/05,
University of York, England, 1999

11. S. A. Vilkomir, G. I Zhidok, Experience of Licensing
of Software for Digital Safety Related Systems in
Ukraine, Project Control for 2000 and Beyond,
Proceedings of ESCOM-ENCRESS 98, Rome, Italy,
27-29 May 1998, 328-331

12. C. Garrett, S. Guarro, G. Apostolakis, The Dynamic
Flowgraph Methodology for Assessing the
Dependability of Embedded Systems, IEEE
Transactions on Systems Man and Cybernetics, 25,
May1995, 824-840

13. N. Fenton, B. Littlewood, M. Neil, L. Strigini, A.
Sutcliffe, D. Wright, Assessing Dependability of
Safety Critical Systems using Diverse Evidence, IEE
Proceedings Software Engineering, 145(1), 1998, 35-
39

