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ABSTRACT 
 
As we depend more and more on software intensive 
systems, safety is of paramount importance. This paper 
attempts to address the often-neglected topic of safety 
assessment for software intensive systems. A thorough 
analysis of system hazards, and related catastrophic 
events, allows the developers to assess the system safety 
by identifying all potential catastrophic events and their 
impact on requirements, design, and other mitigation 
means. If we can present an argument that all hazards 
leading to catastrophic events have been handled, we de-
facto establish a baseline for a “safe” system. This paper 
proposes classification of hazards and catastrophic events 
from the perspective of the software modules 
implementing the target system functionality.  
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1. INTRODUCTION 
 
The growing complexity of modern systems is due to the 
ever-increasing power of computing devices. The 
functionality that has been implemented in hardware is 
now often ported to software providing a variety of 
modifiable options and flexibility. However, the bad news 
is that the software complexity is the main source of 
potential hazards introduced by the software itself. These 
hazards are due to the system entering an inconsistent or 
unsafe state, which may occur in the case of a violation of 
mutual exclusion, lack of synchronization, corrupted 
communication, deadlock, etc. All these may lead to a 
situation known as a catastrophic event, which in turn 
may result in the system failure, if proper mitigation is not 
used. 
The primary objective of software safety is to guarantee 
that software does not cause or contribute to a system 

reaching such a hazardous state. Since such a guarantee is 
rather difficult to accomplish, we will settle for second 
best. We strive to design the system in such way that: 

o it detects and takes corrective action if the 
system reaches a hazardous state, and  

o it mitigates possible damage in case a 
catastrophic event occurs. 

 
In this paper we discuss the differences between 
reliability and safety, the impact and relation of software 
to the overall system safety, and introduce the concept of 
assessing the safety of a software intensive system 
through analysis of the hazards and potential catastrophic 
events. The measure of safety is defined as coverage of 
the complete set of system hazards, including the 
additional hazards introduced by the software itself. 
 
2. RELIABILITY AND SAFETY  
 
Reliability and safety are the major considerations for any 
high integrity system operations. There is a need to define 
and distinguish between these two closely related, 
nevertheless different concepts. Both reliability and safety 
are components of dependability [1] defined as a measure 
of the overall quality of the system - or the property of the 
system that justifies reliance on the system services. The 
typical dependability attributes, in addition to reliability 
and safety, are: availability, maintainability, 
confidentiality, security, integrity, etc. The dependability 
attributes are interrelated and their importance may vary.  
 
A reliable system will assure continuity of its functions. 
Reliability defines the property of the system to meet its 
specified requirements. A system is thus reliable if it does 
what the developers said it would do. A deviation from 
the system requirements is treated as a failure. The failure 
can be a situation when the system does not accept the 
input, produces incorrect output, produces the output at 
the wrong time (too early, too late), or simply does not do 
what it “shall do” according to the requirements 
documents. Reliability is most often defined in terms of 
the probability that the system will be performing its 



  

intended function, thus operating failure-free for a 
specified period (or a number of missions). Reliability is 
often identified by related measures like failure rate or its 
inverse, mean time to failure. Given appropriate data, 
various mathematical models allow us to derive a 
quantitative reliability estimate. The subject, despite being 
rather controversial when applied to software, has well-
established literature [2, 3]. 
 
Safety is when we are protecting human health, life and 
environment. Safety is the property of a system that it will 
avoid hurting someone or cause property loss or damage. 
A system is safe if it does not cause the users to be injured 
or killed, does not cause damage or destruction to any 
connected equipment, does not cause a financial loss. The 
system that does not work (is not reliable) may be 
completely safe. Likewise, completely reliable system 
may still injure someone as it may produce an output that 
the developers never expected, thinking only in terms of 
the system functionality rather than considering potential 
hazards. The majority of real-time, embedded applications 
control some dedicated system, thus controlling the power 
that the system can dissipate. Systems with such 
characteristics are called safety-critical or safety-related. 
The representative literature positions are those of 
Leveson, Storey, Herrmann, Friedman/Voas, Gardiner, 
Bowen [4,5,6,7,8,9].  
 
A rigorous approach to safety has been proposed by Kelly 
with the “safety case” concept [10]. Rather than relying 
on prescriptive standards and regulations, the burden is 
shifted to the developers who are required to construct 
and present arguments that their systems attain an 
acceptable safety level. The arguments and related 
supporting evidence constitute the “safety case''. The 
authors of the “asymmetric” approach to the safety critical 
software [11] attempted to define the most important 
areas where software assessment should be concentrated, 
suggesting an asymmetric allocation of resources. 
Another project dealing with the issue of safety 
assessment [12] involved building formal models and 
integrating diverse evidence to provide quantitative safety 
arguments. The research studied fuzzy sets, Bayesian 
belief nets, and various probability models. A related 
study dealt with issue of the context for software safety 
assessment [13] recognizing the fact that software is 
deterministic and its behavior depends not only on the 
inputs but also the environment in which software 
operates. 
 
It is a common view for engineers involved in reliability 
studies that reliability and safety are identical. However, 
many accidents may happen without evident system 
failure resulting from a combination of environmental 
events, procedural mistakes, and system faults. One needs 
to emphasize that reliability is a bottom-up activity 
focusing on system failures while safety is top-down 
approach concentrating on system hazards.  
 

3. SOFTWARE SAFETY ANALYSIS  
 
With full understanding that safety is a critical system 
issue, there is still a need to analyze the system safety 
from the software viewpoint. The system Preliminary 
Hazard Identification (PHI) and the subsequent 
Preliminary Hazard Analysis (PHA) are the starting point 
for software safety analysis. They are designed to identify 
and categorize the hazards or potential mishaps that may 
result from system operation. Domain specialists and 
safety engineers must identify as many hazards as 
possible. Classifications of the hazard severity may range 
from catastrophic to critical to marginal to negligible. 
Also, the frequency of hazards can be categorized as e.g. 
frequent, moderate, occasional, remote, unlikely, or 
incredible. Depending on this classification, appropriate 
measures to handle the hazards are undertaken. 
 
Once the hazards have been determined, we consider 
various faults, events, and parameter deviations. The 
principal objective of Software Fault Tree Analysis 
(SFTA) is to show that the software logic will not produce 
system safety failures. We determine all possible 
environmental conditions and events, which could lead to 
these software-induced failures. The basic procedure is to 
assume that the software output (lack thereof, wrong 
timing) caused a safety violation and then work backward 
to determine the possible reasons this output is produced. 
 
The initial system safety analyses, conducted during the 
system requirements phase when the role of software is 
being defined, begins with identification of hazards 
associated with a particular design concept and/or 
operation. These initial analyses and subsequent system 
and software safety analyses identify when software is a 
potential cause of a hazard or when it will be used to 
support the control of a hazard. Such software is classified 
as safety-critical, which then makes it subject to software 
safety analysis.  
 
Software Safety Analysis is the development activity 
designed to identify the software components (programs, 
modules, routines, functions, objects, data structures) that 
are critical to system safety, and thus must be examined in 
depth. These software components are identified as safety 
critical. It should be noted that the entire software must be 
analyzed at least to the extent necessary to determine its 
impact upon the safety critical components. All programs, 
routines, modules, tables, or variables which control or 
directly/indirectly influence the safety critical code shall 
also be classified as safety critical. Additionally, some or 
all of the software tools (e.g., compilers, support software, 
etc.) may also have to be designated as "critical". All 
safety critical software elements will be analyzed to the 
source/object code level by the follow-up software 
hazardous effect analysis. 
 
It is clear that software by itself is not hazardous. 
However, some software components may be considered 



  

hazardous when interfaced with a certain type of system. 
A typical example of what we call safety critical software 
is software controlling and monitoring some undesired or 
uncontrolled release of energy restricted by hardware 
components. Another example is software that provides 
indirect control or data for safety critical processes, thus 
leading to potentially erroneous decisions by human 
operators. The Software Hazardous Effects Analysis 
(SHEA) is the activity, which enables us to identify the 
safety significant and safety critical software at the system 
component/unit level. We use the SHEA to identify 
hazards associated with the role of a software item in 
performing the functions to deduce the possible causes, to 
identify safety requirements for design and test, and to 
control the hazard causes. 
 
Considering the above, the starting place for the analysis 
is the code responsible for the output. We need to 
determine the current values of the code variables and 
then backtrack deducing how the program reached this 
part of the code. To be able to associate appropriate 
software components with identified hazards, it is critical 
to have specific and traceable safety requirements. The 
level of detail required for such analysis may be limiting 
factor. It is recommended for use only for the software 
components directly responsible for very critical and 
potentially catastrophic events. 
 
The industries dealing on an everyday basis with software 
safety address the issues of software hazard risk 
assessment through appropriate standards: military (MIL-
STD-882D, DEF00-55 and 56), aviation (DO178B), 
aerospace (NASA-STD-8719.13A), nuclear (IEC60880, 
ANS ANSI/IEEE 7.4.3.2), and programmable electronic 
(IEC61508) standards. The website 
http://www.12207.com/ provides a list of standards 
applicable to medical devices (ANSI/AAMI SW 68, FDA 
Guidance 1-3, IEC60601-1-1 and-4, ISO13485, 
ISO14971).  
 
To reduce the risks associated with the identified hazards 
we may use different approaches. In the order of 
preference we can:  

o Modify the requirement specification 
o Modify the design 
o Integrate additional safety features 
o Include additional warning devices 
o Modify the operating procedures and training  

 
Modification of requirements allows for early handling of 
hazards while the modification of operating procedures is 
an “after fact” activity – and is due to human 
imperfection. It is clear that the risk reduction is more 
effective and less costly when the hazards are discovered 
early in the lifecycle.  The bad news is that for any system 
of reasonable complexity, it is likely that not all hazards 
can be predetermined. Consequently, additional activities 
may be required to assure system safety. These include, 
but are not limited to, partitioning and protection, safe 

kernels, watchdogs and procedural solutions. In addition, 
there is an increasing body of experience with application 
of formal methods and a model-based approach to support 
safety of the software-intensive product. 
 
4. SAFE SOFTWARE  
 
Software is assumed to be safe, if it is highly unlikely that 
it could produce an output that when interacting with the 
system would cause a loss of physical property, physical 
harm, and loss-of-life for the system that the software 
controls. The term “software safety” refers to a variety of 
development and assessment processes that attempt to 
accomplish this goal. However, software safety is a sub-
problem of system safety. The objective of software fault 
tolerance techniques is to survive the faults during the 
run-time. By this measure, the fault tolerance can be 
treated as a sub-problem of system safety. 
 
For each physical system we can identify a set of 
functions that it performs. For each function we may 
identify zero or more catastrophic events that must be 
prevented. If the software controls directly or indirectly a 
specific function, we must design the code in such way 
that the output will not lead to the undesired event. The 
objective of software safety assessment is to demonstrate 
the above. The weak points of this reasoning are that: (a) 
system safety (or a lack thereof) must be completely and 
unambiguously defined before software safety can be 
tackled, (b) the software “responsibility” must be 
completely and unambiguously defined. For example, a 
system placing incoming commands in a linked list for 
future execution may fail after the list exceeds some 
number of entries (for systems with memory limitation). 
This situation must be accounted for in the software 
development phase and additional code must be provided 
for remedial action.  
 
Given the relationship between software components, one 
may use for example Fault Tree Analysis to assure that 
the software subsystem is safe. This popular graphical 
method starts with the top-event related to the identified 
hazard and works backwards to determine the causes. To 
guarantee that the entire software system does not 
introduce interference, we use concepts of protection via 
firewalls. Firewalls isolate critical requirements modules 
from modules that do not contribute to function affected 
by critical events.  Non-critical software components must 
not affect the critical components in unpredictable 
fashion. Such integrity must be valid under both: normal 
and abnormal operation (i.e., when the faults manifest 
themselves). 
 
5. SAFETY METRICS  
 
There is no accepted agreement on software safety 
measures and metrics. The critical argument here is that 
safety is the system issue. The other argument is 
attributed to the fact that the safety is defined in the 



  

negative: “do not harm”. It is much easier to show that 
something happens than that something does not happen. 

Then, what can we accept as Software Safety Metrics? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 1: Relationship between system-software artifacts 

 
We propose a software safety assessment related to the well-
known concept of coverage. Assume that, as a result of 
system hazard analysis, we create a comprehensive set of all 
hazards (H) consisting of elements h1 to hn and we identify 
the related set of catastrophic events (E) consisting of 
elements e1 to em.  Assume we have a complete set of 
software requirements listing both functional and the quality 
of service requirements that the software must implement 
(R – a list of r1 to rk). It is imperative that the set R has 
been created in such way that specific subset of R (say S, 
consisting of elements s1 to sp) can be directly linked to 
elements of H, i.e. there is a relation between S and H. The 
relationships between the sets are depicted in Figure 1.  
 
The software/firmware of the system is implemented by a 
set of software components or modules (M). We review 
each module of the set M from a triple perspective:  
(a) Does it implement an element of S?  
(b) Does it contribute to the defined hazards producing 

an output leading to a catastrophic event in E?  
(c) Does it contribute to any additional hazards (H’) and 

the resulting catastrophic events (E’)?   
 
Case (a) is a situation when the requirements are derived 
from hazard analysis. In this case, the subset S is a part of 
the defined requirements. Meeting the requirements, 
which is a premise of system reliability, is in this case 
also a base for safety assurance. However, two remaining 
cases are pointing to the difference between reliability and 
safety. In case (b) we need to apply rigorous techniques 
for testing and verification. We should seek either design 
or procedural solutions to eliminate and/or reduce the 
hazard. In case (c) the lists H and E need to be modified 
(by augmenting them with the H’ and E’, respectively). A 

re-design, leading to modification of the set M, may be 
necessary.  
 
What are the rigorous techniques we postulate in case (b)? 
The simplicity of the module is one of the best defense 
lines. Reduced complexity makes the module both 
readable and testable while simplifying the possible 
interfaces between software modules. We need to identify 
what possibly can go wrong with the module code by 
analyzing such events as the deviation of the values, 
deviation of timing, lack of synchronization, corrupted 
communication, a potential for data loss, deadlock and 
live-lock. Another typical guideline relates to reduction of 
potential effect of common mode failures – a situation 
when failure occurs as a result of faults in different 
redundant modules.  We generally accept avoiding single 
point of failure, where the failure of a single component 
may lead to the total system failure. We must not allow a 
single hardware fault (e.g. lack of data, reversed bit) to 
trigger an unrecoverable error. Other guidelines relate to 
the determinism of software execution by use of simple 
sequential structures, block-recovery redundancy and, if 
feasible, two-level architecture. Fault injection is an 
established and accepted technique that can be used for 
the identified safety critical modules.  
 
In a situation (c) when the additional hazards are 
introduced, the objective would be either to eliminate 
them or to mitigate their effect. The elimination would 
rely on removing the causes of the hazard, which can be 
done by better understanding how hazards were 
introduced in the first place. For the hazards that cannot 
be removed, it is essential to mitigate them. This can be 
accomplished by adding additional components 
(monitors, watchdogs, and redundancy measures – 
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implemented either in hardware or software). On the 
hardware side, a concept known as safety core may be 
used. The safety core is a separate circuitry of limited 
functionality, designed to take over in a situation when 
the system failure prevents continuation of safe operation. 
A software solution may include a safety kernel – an 
independent programming module that monitors the state 
of the system to determine when potentially unsafe 
system states may occur or when transitions to potentially 
unsafe system states may occur. The safety kernel is 
designed to prevent the system from entering the unsafe 
state and return it to a known safe state. Obviously, the 
operations of safety kernel are separated from operation 
of the rest of the code. All the above-mentioned solutions, 
in principle, increase software complexity thus somehow 
contradicting the first rule of safe software: keep it 
simple. 
 
If all the events from the modified set E are accounted 
for, we have achieved the required safety coverage. It is 
evident, that the proposed assessment is based on very 
meticulous hazard analysis leading to identification of the 
sets H and E, and subsequent mapping of the sets into the 
specific subset S of the software requirements (R), 
traceable into subsequent design (M). This traceability 
allows developers and testers to visualize the relations 
between system components and hazards, which in turn 
may lead to better understanding of the system safe 
operation. 
 
6. CONCLUSIONS 
 
The safety assessment process for software intensive 
system is an integral part of safety-critical development. 
Typically, dedicated safety engineers, with a system 
and/or hardware background, carry out the process. 
Hazard analysis is elaborated at the system level and then 
addressed in various aspects of the design by assigning 
the handling of specific hazards to hardware and software, 
as appropriate. The individuals involved should have an 
appreciation of the software impact on system safety and 
the potential hazards that the software may contribute 
(due to such situations as deadlock, lack of 
synchronization, corrupted data, or violation of mutual 
exclusion). The resulting potential catastrophic events 
must be added to the original, system-oriented list. Only 
then, a thorough analysis of the design and the assurance 
that the design choices will facilitate hazard mitigation 
and prevent the occurrence of the catastrophic events can 
we assess a measure of system safety. We need to stress 
again that only comprehensive system hazard analysis, 
extended to the software components, will allow 
developers to create a comprehensive list of hazard – the 
starting point for the proposed safety assessment. 
Historical safety experience, lessons learned, trouble 
reports, and accident and incident files are examples of 
techniques to help in the hazard identification. Typically, 
any organization developing safety critical products 
collect such data as components of a successful system 

safety effort. Many industries have published guidelines, 
checklists, standards, and codes of practice that may 
facilitate developing comprehensive hazard list.  
 
The proposed approach attempts to give some 
quantifiable, albeit binary in nature approach to system 
safety: if all identified hazards and the related catastrophic 
events are handled by the design, the system is considered 
safe.  Further work must be done to specify software 
hazard analysis process and evaluate variety of 
architectures supporting software intensive safety critical 
systems. 
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