
Software Tragedies: Case Studies in Software Safety

A. J. Kornecki, Embry Riddle Aeronautical University, Daytona Beach, FL
J. Lewis, Lockheed Martin Information Systems, Orlando, FL

Keywords: software failures, accidents, software safety, causal analysis

Abstract

The paper takes a look at the events surrounding true safety failures in software intensive
systems. It examines some less well-known software safety events and tries to derive lessons
from them. It attempts to identify patterns or similarities in the environment surrounding software
accidents in which the loss of human life occurred. It also attempts to reveal what, if anything
can be learned from these accidents to prevent similar occurrences in the future.

Three software case studies have been used to set the stage for the paper. They are: the Patriot
Missile System failure in the Gulf War in 1991, the London Ambulance Service software system
failure in 1992, and the Marine Corps MV-22 Osprey crash in 2000. Each case study covers a
separate accident in which software failure has been identified as the primary cause of the
accident leading to the loss of human life. Each case study examines the context of the accident
as well as the events leading up to the accident. The actual cases have been described elsewhere.
These incidents were chosen because, while each happened in a different context, all three
happened because of faulty software, and all three have been argued to have led to the loss of
human life. These incidents are true software safety failures. The paper attempts to draw lessons
from the analysis of these software failures and make suggestions for further improvements in
software safety.

Introduction

Is software safety really an issue? Books and papers have been written on the topic making valid
arguments that industry needs improvement in this area. The assumption is made that there exist
hazardous environments in which software is primarily responsible for ensuring the safety of
human personnel. If the software in these environments is written incorrectly, people may sustain
injury or death. The goal of literature on the topic is to ensure that hazardous situations are
identified and subsequent steps are taken to build software that mitigates the associated risks.

Nancy Leveson in the appendices of her text (ref.1) provides exhaustive analysis of several
system failures in the medical, aerospace, chemical and nuclear industries. While software issues
are noted, most of the examples focus on general system safety. Robert Glass’s text (ref.2) shows
what went wrong in several disasters attributed to software. These include the Denver Airport
baggage system, the IRS modernization, American Airlines' failed reservation system, New
Jersey’s Department of Motor Vehicles software failures, the NCR inventory system that nearly
destroyed its customers, and the collapsed next-generation FAA Air Traffic Control System.

There are few well-known cases where software was primarily responsible for injury, financial
loss, and the actual or implied loss of life: THERAC’s radiation problems (ref.3), the self-
destruction of the Ariane 5 (ref.4), and controversial accidental shooting down of an Iranian
airliner by the U.S.S. Vincennes (ref.5). The purpose of this paper is to examine some less well-
known events related to safety of software intensive systems and derive some lessons from them.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

896

Specifically, this paper examines the Patriot Missile System failure in the Gulf War in 1991, the
London Ambulance Service software system failure in 1992, and the crash of the U.S. Marines
MV-22 Osprey in 2000. While sources addressing these events are scarce, enough information
has been obtained to describe the overall story, analyze the causes of failure, and derive some
lessons to be learned from the software failures. These incidents were chosen because, while
each happened in a different context, all three violate safety due to faulty software, and all three
contributed to the loss of human life. These incidents are true software failures.

Patriot Missile System Failure

The Story:

The Patriot Missile System was first developed in the 1960s as a surface-to-air missile (SAM)
system that was easily mobile and could operate a few hours in one location before moving to
another. Originally built to target Soviet built medium and high altitude aircraft and cruise
missiles, the Patriot system was designed to bring down objects traveling around Mach 2. The
system has evolved to counteract to short-range ballistic missiles and is well known for its action
and successes against Scud missiles in the first Gulf War.

It was in the Gulf War that a serious error in the Patriot Missile System led to the deaths of 28
American soldiers. During Operation Desert Storm a Patriot missile battery was located around
an armed forces base in Dhahran, Saudi Arabia. On February 25, 1991 the missile system failed
to track and intercept an incoming Scud missile which subsequently hit a barracks, killing 28
Americans.

The Information Management and Technology Division of the United States General Accounting
Office carried a formal investigation. The General Accounting Office report (ref.6) traces the
source of system failure to a software problem.

Failure Causal Analysis

Each Patriot missile defense system is composed of a several batteries (typically six) that ensure
the safety of the protected area. Each battery consists of an independent ground-based Radar
Unit, and Engagement Control Station allowing manual or automated missile command and
control, eight missile launchers, and a communications station. The majority of the responsibility
for missile operations is achieved through the Weapons Control Computer, which tracks and
intercepts targets and allows for command and control functions. The design of the computer
itself has evolved from its original 1960s configuration but is still based on 1970s hardware and
software technology.

In operation, the weapons control computer uses information from the radar to track, identify, and
plot the target and then release missiles to intercept the incoming target. Once the computer has
identified a target (e.g. Scud missile) using pre-programmed target characteristics (size, speed,
shape), an electronic detection device in the radar system called the range gate calculates a three
dimensional area where it should next look for the target. If the target is then acquired in the
predicted range, the computer confirms the target velocity and trajectory.

Figure 1 shows a correctly calculated range gate area:

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

897

Figure 1 - Patriot Missile Tracking System (ref.6)

The range gate predicts in what area the target will be located based on known pre-programmed
characteristics of the missile. Velocity is modeled as a real number. The internal clock keeps
time to tenths of a second, and then multiplies by 1/10 to produce the time in seconds. The
system computer uses 24 bit fixed-point registers. This means that the non-terminating binary
expansion of 1/10 is chopped at 24 bits (0.00011001100110011001100 in binary). Over time
calculations of time based on the truncated value of 1/10 add to become a significant source of
error (as shown in Table 1).

Table 1: Patriot Missile System Error Accumulation over Time

Hours Seconds Calculated Seconds Error Meters Shifted
0 0 0 0 0
1 3600 3599.9966 .0034 7
8 28800 28799.9725 .0025 55

20 72000 71999.9313 .0687 137
48 172800 172799.8352 .1648 330
72 259200 259199.7528 .2472 494

100 360000 359999.6667 .3433 687

Assuming a target traveling at 1,676 meters per second and a Patriot battery operating
continuously for 100 hours with an operating timing error of .3433, the range gate will have
missed its target area by 687 meters. With this deviation the target will be neither validated nor
intercepted.

The Patriot missile battery that failed at Dhahran had been in continuous operation for over 100
hours. Ironically, a software fix had been developed in the United States by Raytheon, the
developer, and arrived in Dhahran on February 26, the day after the Scud attack. Also ironically,
the situation would have been averted had the system computer been rebooted every 10 hours or
so, which is about a minute-long operation.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

898

Lessons Learned

o Upgrading safety-critical software systems can be dangerous and should involve

extensive testing. Originally developed in the 1960s, the Patriot missile system evolved over
time, and in components. The system was originally developed to target aircraft traveling
around Mach 2. Through the evolution process, the system was upgraded to target missiles
traveling at Mach 5. Unfortunately the system was never tested on these faster moving
targets over extensive periods of time.

o Small faults in safety-critical software can have large, costly consequences. This is
certainly a problem in all software, but must be especially addressed when safety is a factor.
At speeds as high as Mach 5 over periods of even a few hours, small numerical errors due to
round-offs produce large shifts in predicted missile trajectories.

o If safety-critical software is migrated, software redesign should be considered. The
original intent of the Patriot system was to provide a mobile defense against aircraft for short
periods of time. The accident revealed that the original hardware and software was not
effectively migrated to the new environment of a stationary battery tracking Mach 5 missiles.
It would have been wise to acknowledge the original intent of the developers and identify
assumptions subsequently made in the implementation (i.e. the 24 bit register) so that
redesigns could be made where necessary.

London Ambulance Service System Failure

The Story

In the 1980s the London Ambulance Service used a manual system for ambulance mobilization
and dispatch services. Central Ambulance Control (CAC) would receive a London emergency
999 call, and the control assistant (CA) receiving the call would write down the call details on a
pre-printed form. The incident would be located in a map book with reference coordinates, and
the set of information would be sent off on a conveyor belt to a central collection point. A CAC
staff member would collect the paperwork and identify which of several resource allocators
should be called (North East, North, West, or South divisions of London). Using status and
location information for ambulances provided by a radio operator, the resource allocator decides
which resource should be mobilized. The resource is then recorded on the form and passed on to
a dispatcher who contacts the ambulance directly. The whole process should take less than 3
minutes.

The Finkelstein report (ref.7) identifies some problems with the manual system:

a) identification of the precise location can be time consuming due to often incomplete or
inaccurate details from the caller and the consequent need to explore a number of
alternatives through the map books;

b) the physical movement of paper forms around the Control Room is inefficient;
c) maintaining up to date vehicle status and location information from allocators' intuition

and reports from ambulances as relayed to and through the radio operators is a slow and
laborious process;

d) communicating with ambulances via voice is time consuming and, at peak times, can lead
to mobilization queues;

e) identifying duplicated calls relies on human judgment and memory and is error prone;
f) dealing with call backs is a labor intensive process as it often involves personnel leaving

their posts to talk to the allocators;

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

899

g) identification of special incidents needing a Rapid Response Unit or the helicopter (or a
major incident team) relies totally on human judgment.

A strong case can be made for a computer aided dispatch system that would address many of
these deficiencies. An early attempt was made to computerize the existing LAS Command and
Control system but was abandoned after load testing revealed that it could not cope with the
demands likely to be placed on it in the London environment. The new plan was to implement a
state of the art London Ambulance Service Computer Aided Dispatch (LASCAD) system.

The software requirements specification (SRS) was ambitious. It called for a totally automated
system where the majority of incoming calls would result in “an automatic allocation proposal of
the most suitable ambulance resource” (ref.7). In complex cases, a human resource allocator
would be called upon to identify and allocate the best resources, but for the most part the original
CAC staff member receiving the call would see the incident through to completion. In late 1990,
work was begun on the SRS transitioning to design in summer of 1991. The LAS management
mandated that the entire system, in a single phase-over process, be up and running by January 8,
1992. While concerns were raised about the non-negotiable time frame, a consortium of Apricot,
Systems Option, and Datatrak won the contract for £1.1 million. It is interesting to note that the
competing contractors were asking around £8 million. Questions were later raised as to why the
bid was significantly cheaper than those of the competitors.

After an unplanned phased implementation process over the course of the first nine months of
1992 in which the untested system proved itself to be unstable in each phase, the decision was
made to migrate directly to the fully implemented, fully automatic system on October 26, 1992.
Pandemonium ensued. The system was lightly loaded on startup, but as the day progressed and
the number of calls increased, a build up of emergencies in the system increased. The system
bottlenecked in several areas of operation and entered a vicious spiral of cause and effect where
the bottlenecks caused more bottlenecks. On October 28, at 11 pm, after two consecutive days of
system failure and personnel frustration, the LAS instigated an unplanned manual backup
procedure. When the dust settled and the disaster was contained, over twenty would-be patients
had lost their lives. While none of the coroners’ reports has specifically stated that the LAS can
be blamed for the death of a patient, at least one LAS trade union, NUPE, insisted that the
untested system has directly led to patients’ deaths (ref.7).

Failure Causal Analysis

Like many instances, the system’s failures cannot be tied to any single cause. Rather, a multitude
of small problems worked together to produce the system’s failures. Software alone cannot be
blamed for the deaths of twenty individuals in this case, but the software and its lack of quality
certainly played a major part.

It is clear that the LASCAD software was not complete or reasonably tested. Data transmission
problems existed between mobile data terminals and it was unclear how accurate the Automatic
Vehicle Location System (AVLS) software was. Visual Basic, used to write all screen dialogues,
was added as a tool some time into the project as it had just been released. Unfortunately the
developers, in their haste to finish the project, overlooked the fact that Visual Basic is a good tool
for fast development, but not a good idea for use in time-critical, safety-related systems. Visual
Basic applications are not fast. The LASCAD users experienced this and started preloading all
the screens they needed to use. This in turn put a large demand on the processor and memory not
only slowing the process more, but in some instances causing system crashes.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

900

The LASCAD software had not been well tested. The backup file server had not been tested at all.
No attempt had been made to foresee the effects of incomplete or inaccurate data to the system (e.g.
late status reporting, incomplete vehicle locations). The inaccurate data led to a large number of
exception messages being generated. To compound this problem, it seems that when the exception
list grew and exceptions were scrolled off the page, there was no way to deal with the now invisible
exceptions. This in turn had the effect of producing more exception messages. There was no way
to go back to see if the proper vehicle had ever been dispatched to handle the emergency. The
exception handling software itself became a major system bottleneck.

Figure 2: LASCAD Cause / Effect Relationships (ref.7)

System misses data
transmission

Crews forget to press
right button in correct

sequence

Radio blackspots

Crew become
impatient with
re-transmission

Radio bottlenecks

Missing or swapped
callsigns

“Hand shaking”
problems

Crews don’t press
buttons intentionally

Crews take different vehicle
or different vehicle responds

to incident

Incorrect or missing
vehicle locations

Too few call
takers

Incorrect or no vehicle
location or status

received by system

Allocators unable to
spot and correct

errors

Voice
comm’s
delays

Failed data
mobilisations

Increased
voice

comm’s

Crew
frustration

System has
incorrect location

and status
information

System
allocation
faults

Resources reserved,
but not mobilised

Incorrect
allocation:
multiple
vehicle,
or not
closest
vehicle

System
has fewer
resources
to allocate

System
places
covered
jobs back
on
awaiting
attention
list

System
generates
exception
messages

DELAYS
TO

PATIENT
S

Two line
summary
awaiting
attention

list builds
up and
scrolls

through

Staff
unable to

clear
exception

mssg’s

Uncleared
exception
messages
generate
more
exception
messages

System slows Re-booting
becomes more frequent

Callbacks

More and
longer calls

Delays to
phone

answering

Uncovered
incidents

Exception
messages deleted
to speed system

Takes
longer
to
allocate

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

901

It is also clear that the LAS staff operating the system had inadequate training. While the staff
and ambulance crews had received some training, it was carried out well before the original
planned implementation date. There was a delay of over a year between when the staff was
trained and when they actually had to use the system. The training provided was not always
comprehensive and often inconsistent, exacerbated by the fact that constant changes were being
made to the system and its interface throughout its development.

Lessons Learned

o Tools and operating systems used in safety-related applications should be well chosen

and industry proven. Using Visual Basic to develop a safety-related application running on
Windows 3.0 was not a good idea, especially since safety in this case depended on speed of
execution. Running a Windows operating system where speed is a concern is not
recommended due to its non-preemptive environment. On top of that, the development team
chose an unproven, recently released development tool that was designed primarily for
prototyping and developing small, non mission-critical systems.

o Applications need to be thoroughly tested before introduction to a safety-related
environment. The original plan called for the LASCAD system to be fully implemented on
a set date (one would assume after complete testing). Due to the delayed time frame and the
target date being missed, it was decided mid-stream that a phased implementation would take
place where whatever was finished would be put into operation. During phase-in the system
consistently showed itself to be buggy and unstable. Yet the decision was made to continue
with the final phase and implementation of the fully automatic LASCAD system.

o Safety-related software operators need a complete, well-developed training program to
equip them for the job. It is generally recognized that operators of complex safety-critical
applications receive intense training. While training was planned and implemented in the
LASCAD project, it was too little and much too early. The training was neither consistent
nor comprehensive with substantial skills decay between training and the operations. The
software and its user interface had been modified between the time of the training and the
operational environment. This was evidenced by the LASCAD staff’s frustration, overall
lack of system confidence, and unfamiliarity with the system’s procedures and protocols.

The Marine Corps MV-22 Osprey Crash

The Story

The following is an excerpt from a special briefing given by Marine Corps Maj. Gen. Martin R.
Berndt on April 5, 2001 about the MV-22 accident (ref.8):

“On December 11th of last year four Marines perished when an MV- 22B Osprey
call sign Crossbow 08 assigned to Marine Medium Tiltrotor Training Squadron
204 crashed while on approach to Marine Corps Air Station New River. The
aircraft took off from New River at 5:47 p.m. local to conduct a night vision-aided
training mission. At 7:17 p.m., after completing its third of four planned radar
approaches into the air station at New River, Crossbow 08 made a left-hand turn
heading north, accelerated to 180 knots, climbed to 1,600 feet, and converted to the
airplane mode. That is, the nacelles, which are these large cowlings on the end of
the wing, rotated forward.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

902

During this portion of the flight Crossbow 08 was in contact with air traffic
controllers at Marine Corps Air Station New River. The controllers directed the
aircraft to turn to magnetic headings of 280 degrees, 250 degrees, 230 degrees,
and finally 200 degrees, or south-southwest. Crossbow 08 acknowledged and
executed all of these heading changes. The aircrew used the flight director panel,
which can be likened to a programmed autopilot, to complete these turns. During
this series of left-hand turns the aircraft's air speed was reduced to 160 knots on
the flight director panel, and the nacelles began to transition to the helicopter
mode. This transition occurs automatically when the air speed is reduced below
160 knots to compensate for the lift loss from the reduced airflow over the V-22's
fixed wing.

At 7:23:40 p.m. shortly after the nacelles began to transition from the airplane
mode, a main hydraulic line ruptured that feeds the aircraft's left squash plate
actuators. When the flight control computers sensed the problem, they stopped the
rotation of the nacelles.”

“When the hydraulic line ruptured, the primary flight control system, or PFCS,
reset button illuminated, in accordance with published procedures, the aircrew
pressed the reset button. This action started a chain of unpredicted and
uncontrollable events that caused accelerating and decelerating actions of the
aircraft until it entered a stalled condition and departed controlled flight.

At 7:24:10, just 30 second after the failure of hydraulic system number one,
Crossbow-08 crashed in a marshy area seven miles north of the airfield in a nose-
down attitude.”

Failure Causal Analysis

At first glance it appears that the doomed MV-22 flight experienced merely mechanical problems.
A hydraulic line responsible for feeding the aircraft’s left squash plate actuators (used in
providing blade pitch control) ruptured due to chafing by a moving wire bundle. The backup
systems worked correctly and the isolation valve stopped the hydraulic fluid leak. The squash
plate actuators were still operable though the left actuators were receiving more hydraulic
pressure than the right ones. Berndt maintains, “this hydraulic failure alone would not normally
have caused an aircraft mishap” (ref. 8)

Two other references provide additional information on what brought down Crossbow-08 (refs.
9-10). The hydraulic failure caused a series of warning indicators to go off in the cockpit, one of
these being the illumination of the primary flight control system, a light sitting squarely in front
of the pilot and copilot, and a warning tone. The operations manual tells the pilot to respond to
this warning by pressing the primary flight control system reset button.

The pilot performed as per the published procedure and pressed the reset button. The flight
system control software reset the system and attempted to reset both prop rotor pitch angles. Due
to the hydraulic failure, asymmetric pressure was applied to the prop rotors. This resulted in un-
commanded movements about the pitch, roll, and yaw axes. The cockpit data recorder revealed
that the reset button was pressed as many as 10 times during the last 20 seconds of the flight in
order to maintain control during the emergency. Unfortunately this action resulted in the aircraft
going increasingly out of control as rapid and significant asymmetric changes to prop rotor pitch
were made every time the system was reset.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

903

Because the MV-22 is a complex aircraft, the primary flight control system needs to be reset by
the system software during many potential emergency scenarios. Resetting the system normally
renders the MV-22 more controllable in most emergency situations. In the case of a hydraulic
failure to a prop rotor, however, the primary flight control system is not supposed to reset itself
due to its potential to apply asymmetrical thrust to the aircraft. The reset button, in this situation,
is supposed to do nothing to the primary flight control system.

Bell and Textron, the companies involved in developing the system, had apparently taken the
situation into account. There was a published procedure for this type of hydraulic failure in the
operations manual, and the pilot followed it. However, the logic implemented in the software did
not account for this situation. It is apparent that testing of the software did not reveal this
anomaly, and there is a question as to whether this particular situation was ever tested. Naval Air
Systems Command (NAVAIR), responsible for inspections and system tests, also missed it.

Lessons Learned

o All emergencies in which safety-critical software is running should be simulated before

introduction to the safety-critical environment. It is during an emergency that everything
that can go wrong will. Often multiple mechanical failures will happen at once, and any
operator involved will have his hands full handling the situation. It is critical that during this
type of situation, the software is not working against the operator by making things worse.
Every emergency situation that the software is responsible for handling should be simulated
to prove that the software is working correctly.

o Complex situations with multiple subsystem interactions involving safety-critical
software should be carefully analyzed. In this case, the interactions between the primary
flight control system software and the backup hydraulic system in an emergency situation had
not been thought out. It is complex situations like this that are hard to foresee during design,
development, and testing. But it is these situations that are the sometimes most safety-
critical.

Conclusion

Any accident that ever happens is typically due to a combination of multiple factors. Accidents
involving safety-critical software are no different. The Patriot missile accident could have been
avoided had there been better communication between the software development team, military
commanders, and the missile batteries in the field. The software fix had already been developed
but it arrived a day late. A better management team, especially in regards to the development life
cycle, could have helped the London Ambulance Service system. The MV-22 accident would not
have happened had the military taken care of the hydraulic line chafing problems that had been
plaguing the fleet for so long. Yet in each of these cases the faulty software remains a major
causal factor in these safety-related failures.

Is the issue of software safety a legitimate concern? While many software failures, large and
small, occur daily, and while a considerable number of safety-related failures have occurred
recently, only a relatively few software failures have historically been a cause of accidents that
resulted in injury or death. As software becomes more prevalent in safety-related systems, these
tragedies provide some lessons to learn and a strong reminder that consequences of software
failures can be disastrous.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

904

References

1. N.Leveson, Safeware - System Safety and Computers. Reading, Mass: Addison Wesley,

1995
2. R. L. Glass, Software Runaways: Lessons Learned from Massive Software Project

Failures. Upper Saddle River, NJ: Prentice Hall, 1997
3. N. Leveson, C.S. Turner, An Investigation of the Therac-25 Accidents, IEEE Computer,

Vol. 26, No. 7, July 1993, pp. 18-41
(http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html)

4. J. Gleick, A Bug and a Crash: Sometimes a Bug Is More Than a Nuisance,
http://www.around.com/ariane.html

5. Aviation Safety Network, Accident Description, Flight IR655, http://aviation-
safety.net/database/1988/880703-0.htm

6. GAO/IMTEC-92-26, Patriot Missile Defense: Software Problem Led to System Failure
at Dhahran, Saudi Arabia, United States General Accounting Office (GAO), Information
Management and Technology Division, February 4, 1992,
http://klabs.org/richcontent/Reports/Failure_Reports/patriot/patriot_gao_145960.pdf.

7. A. Finkelstein, Report of the Inquiry into the London Ambulance Service as presented at
the International Workshop on Software Specification and Design. The Communications
Directorate, Southwest Thames Regional Health Authority, February 1993,
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las/lascase0.9.pdf

8. M. R. Berndt, Marine Corps Maj. Gen. Briefing on V-22 Accident by Maj. Gen. Berndt,
News Transcript. United States Department of Defense, April 5, 2001,
http://www.defenselink.mil/news/Apr2001/t04052001_t405mv22.html

9. C. Bolkcom, V-22 Osprey Tilt-Rotor Aircraft, CRS Issue Brief for Congress, November
5, 2001

10. G. Dady, Osprey to resume flight testing, NAVAIR V-22 Public Affairs Press Release,
March 1, 2002

Biography

Andrew J. Kornecki received MSEE’70 and PhD’74 degrees from the University of Mining and
Metallurgy in Krakow, Poland. After teaching a doing research on three continents, currently he
is employed as a faculty at Embry Riddle Aeronautical University (ERAU), Daytona Beach, FL.
He has been teaching a variety of undergraduate and graduate courses: computer organization,
modeling and simulation, real-time systems, performance analysis, software safety. Recently he
has been engaged in research on testing and certification issues and assessment of development
tools for safety critical real-time systems.

Joshua Lewis received a B.S. in Aeronautical Science from LeTourneau University in 2001 and a
Master of Software Engineering from Embry-Riddle Aeronautical University in 2002. He
currently works as a software engineer in the field of training and simulation for Lockheed Martin
Information Systems in Orlando, FL.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

905

	MAIN MENU
	TABLE OF CONTENTS
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	CD-ROM Help
